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Abstract: - Feature extraction and accurate classification of the emotion-related EEG-characteristics have a key 

role in success of emotion recognition systems. In this paper, an optimal EEG-based emotion recognition 

algorithm based on spectral features and neural network classifiers is proposed. In this algorithm, spectral, 

spatial and temporal features are selected from the emotion-related EEG signals by applying Gabor functions 

and wavelet transform. Then neural network classifiers such as improved particle swarm optimization (IPSO) 

and probabilistic neural network (PNN) are developed to determine an optimal nonlinear decision boundary 

between the extracted features from the six basic emotions (happiness, surprise, anger, fear, disgust and 

sadness). The best result is obtained when Gabor-based features and PNN classifier are used. In this condition, 

our algorithm can achieve average accuracy of 64.78% that can be used in brain-computer interfaces systems. 

 

 

Key-Words: - electroencephalogram, emotion recognition, wavelet transform, Gabor functions, improved 

particle swarm optimization (IPSO), probabilistic neural network (PNN) 

 

1 Introduction 
Brain-computer interfaces (BCI) are systems that 

allow user to translate brain activities into sequences 

of commands for the computer in order to mentally 

control a computer application or Neuro prosthesis 

[1]. It provides ease of communication especially 

for physically challenged person [2].  Several 

methods are existing to detect brain activity such as 

magnetic resonance imaging (MRI) [3], magneto 

encephalography (MEG) [4], functional magnetic 

resonance imaging (FMRI) [5] and 

electroencephalogram [6]. But the EEG has rapid 

response time and is inexpensive method relative to 

other methods, so it is widely used to monitor brain 

activity in BCI research [7, 8]. The EEG signals are 

recorded as a weak potential by placing the 

electrodes on the scalp and analysis to establish a 

BCI system. The research is based on recording and 

analyzing EEG brain activity and recognizing EEG 

patterns associated with mental states [9]. For 

example, imagining a movement of the right hand is 

associated with a pattern of EEG activity in the left 

side of the motor cortex [10]. 

Various methods have been present to design a BCI 

system based on EEG signals such as event-related 

synchronization [11] and event-related 

desynchronization [12]. A number of EEG-based 

BCI systems have been developed recently in which 

patterns of EEG in different mental states can be 

discriminated for information transmission by 

feature extraction and classification algorithms [13]. 

Generally, in a BCI system EEG signals are pre-

processed and the feature that best represent the 

details of the signal is extracted. Then the extracted 

features are used for training the classifier which 

discriminates the features [14]. One of these 

methods is emotion recognition that brain activity 

(EEG) of person is analysis based on various 

emotions such as happiness, surprise and anger. 

Currently, correct EEG-based recognition of 

artificially evoked emotion is only about 60%, but 

much research shows the suitability of EEG for this 

kind of task [15]. This field of research is still 

relatively new and there is still much to be done to 

improve on existing elements in BCI, but also to 

discover new possibilities. 

To design an EEG-based emotion recognition 

system, effective feature selection and accurate 

classification are two important factors to improving 

the performance. The extracted features must be 

able to preserve the discriminant information from 

EEG signals into small unique values. Many 

different features have been thought up to be 

extracted from EEG signals. The most used 

transformation is Fourier analysis to be able to look 

at specific frequency bands [16]. The used classifier 

must be able set an optimal nonlinear decision 

boundary. Support vector machine (SVM) [17] and 
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recently neural network (NN) [18] are used as 

classifier in works. For example, Petrantonakis [19] 

analyzed EEG signals and used neural networks to 

classify them in six emotions based on emotional 

valence and arousal, with a 61% success rate. 

Takahashi [20] used a setup of three dry electrodes 

on a head-band to classify five emotions based on 

multiple bio-potential signals (EEG, pulse and skin 

conductance). The success rate when classifying 

solely on the EEG using support vector machines 

was 41.7%.  

In this paper, we propose an EEG-based emotion 

recognition algorithm based on spectral, spatial and 

temporal features and neural network classifiers. To 

obtain an optimal algorithm, the emotion-related 

EEG signals are decomposed by Gabor functions 

and wavelet transform. Then spectral and spatial 

features are extracted from sub-representations and 

sub-bands. To reduce the computational cost of the 

Gabor function, we introduce a simplified Gabor 

function that called GaborSD. It represents the EEG 

signals in several sub-representations by filtering 

them with the sum over scales and direction of 

Gabor function. Then several features are extracted 

from each sub-representation. Since the non-

effective features increase computational cost and 

decrease the performance of algorithm, principal 

component analysis (PCA) is employed to select R 

effective features among of the several features, 

without supervisory. Furthermore, we develop the 

neural network classifiers such as improved particle 

swarm optimization (IPSO) and probabilistic neural 

network to create a non-linear decision boundary 

between the selected features. So, we obtain four 

algorithms. Each algorithm that has been minimum 

latency and maximum accuracy is specified as 

optimal algorithm. 

The rest of the paper is organized as follows. The 

characteristics of the used emotion-related EEG 

dataset are described in section 2. The structure of 

algorithms including feature extraction and 

classification is presented in section 3. In section 4, 

the performances measures and results of the 

optimal algorithm on six basic emotions (happiness, 

surprise, anger, fear, disgust and sadness) are 

obtained and the best result is introduced as optimal 

algorithm. Finally, some conclusion is discussed in 

section 6. 

 

 

2 Emotion-related EEG dataset 
EEG recording were conducted using the g.MoBIlab 

(g.tec medical & electrical engineering, Guger 

technologies) portable biosignal acquisition system 

including of four EEG bipolar channels, passive 

electrodes, filters: 0.5-30 HZ, sensitivity: 100µv, 

data acquisition: A/D converter with 16-bit 

resolution and sampling frequency of 256HZ. The 

EEG signals from each subject were recorded 

during the projection phase. The EEG signals were 

acquired from FP1, FP2, F3, and F4 positions, 

according to the 10-20 system. The small number of 

EEG channels selected was as an effort to 

implement an emotion recognition method which 

would result in a more user-friendly environment in 

the future and to acquire signals from the brain areas 

according to the emotion expression in the brain, 

based on the asymmetry concept. The FP1 and FP2 

positions were recorded as monopole channels 

(channels 1 and 2, respectively), whereas the F3 and 

F4 positions as a dipole (channel 3), resulting in a 3-

EEG channel set. The averaged EEG signal in the 

time domain, corresponding to each one of the six 

basic emotions for channel 3 is shown in Fig. 1. 

 
Fig. 1: EEG signal corresponding to each one of the six 

basic emotions for channel 3. 

 

In this experiment, 10 healthy volunteers 

participated; all were right-handed subjects (6 males 

and 4 females) in the age group of 20-42 years. At 

first, a suitable interface was implemented for the 

automated projection of the emotion-related pictures 
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and the self- assessment of the emotion picturized 

each time. Pictures of Facial Affect (POFA) by 

Ekman and Friesen [21], showing people expressing 

the six basic emotions (happiness, surprise, anger, 

fear, disgust and sadness), were subsequently 

previewed, separated by black and counting down 

frames to accomplish a relaxation phase before the 

projection of the new picture. More specifically, 

sixty pictures (10 pictures per emotion) were 

randomly projected for five seconds after a five-

second black screen period, a five-second period in 

which countdown frames were demonstrated and a 

one-second projection of a cross shape in the middle 

of the screen to attract the sight of the subject. The 

same sixteen-second procedure was repeated for 

every one of the sixty pictures. An illustrated 

version of the experiment protocol is showed in Fig. 

2. Table 1 show the number of five-second emotion-

related EEG signals that is used for the training and 

test procedure of classifier. 
 

 

Fig. 2: Illustration of the experimental protocol for 

emotion elicitation 

 

 
Table 1. The number of five-second emotion-related EEG 

signals that is used for the training and test of classifier. 
 

sub

ject 

 

sex 
Number of training and test data 

happiness surprise anger fear disgust sadness 

1 M 7 6 8 7 6 7 

2 F 8 6 7 6 8 7 
3 F 8 7 6 8 7 8 

4 M 7 8 8 7 7 7 

5 M 7 6 8 8 7 8 
6 M 7 8 6 7 8 7 

7 M 8 7 8 6 8 8 
8 F 7 7 7 6 7 8 

9 M 7 6 6 8 8 7 

10 F 6 7 7 7 8 7 

    Total 72 68 71 70 74 74 

 

 

3 General structure of the EEG-based 

emotion recognition algorithms 
The overall structure of an EEG-based emotion 

recognition algorithm is shown in Fig. 3. In this 

algorithm L-second epochs from emotion-related 

EEG-characteristics are decomposed to multiple 

frequency components by Gabor functions 

(GaborSD) or wavelet transform and represented in 

the spatial, spectral and temporal domain. Secondly, 

the spectrum energy of each sub-representation is 

calculated by Discrete Fourier Transform (DFT) to 

extract several features from each sub-

representation or sub-bands. Then a three-layer 

MLP neural network with IPSO learning algorithm 

or PNN is trained on the extracted features from six 

emotions (happiness, surprise, anger, fear, disgust 

and sadness) for determining the optimal nonlinear 

decision boundary between different classes. So, 

four EEG-based emotion recognition algorithms are 

obtained including: 

• EEG-based emotion recognition algorithm based 

on Gabor-features and IPSONN classifier (G-

IPSONN algorithm) 

• EEG-based emotion recognition algorithm based 

on Gabor-features and PNN classifier (G-PNN 

algorithm) 

• EEG-based emotion recognition algorithm based 

on wavelet-features and IPSONN classifier (W-

IPSONN algorithm) 

• EEG-based emotion recognition algorithm based 

on wavelet-features and PNN classifier (W-PNN 

algorithm) 

Each algorithm that has minimum average latency 

and maximum average accuracy is specified as 

optimal algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3:  Structure of an EEG-based emotion recognition 

algorithm 

 

2.1 Wavelet-based features 
Registration location of channels (electrodes) can be 

useful as a tool in creating the distinction between 

   
Class 1: 

Happiness 

Class 2: 

Surprise 
Class 6: 

Fear 

Happiness-related 

EEG 

Surprise-related 

EEG 

Fear-related 

EEG 

Feature extraction based on Gabor functions or 

wavelet transform 

Classification based on improved particle swarm 

optimization (IPSO) or probabilistic neural 

network (PNN) 
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emotions. Furthermore, frequency contents of 

various emotions have different spectrum energy. 

The frequency components of EEG signals can be 

involved at five frequency bands, delta (2-4HZ), 

alpha (4-8HZ), beta (8-15HZ), theta (15-30HZ) and 

gamma (30-90HZ). In traditional approach, Discrete 

Fourier transform (DFT) is used to calculate the 

spectrum energy of each band for an EEG frame 

[22]. Since, the EEG signals have the nature of non-

stationary, so DFT can not be a powerful tool to 

decompose the signals because it just provides the 

frequency resolution. Discrete wavelet transform 

(DWT) [23] can be used as a strong mathematical 

tool to disintegrate the EEG with time-frequency 

resolution. In this approach, EEG signals are 

decomposed by wavelet transform and represented 

in the spectral, spatial and temporal domain. For an 

EEG epoch sample
tcX ,
at channel c and time t, 

wavelet coefficients (sub-bands), ),,( tfcx  are 

calculated by the convolution with a wavelet 

function ),( ftM  by: 

),(),(),,( * tcfttfc XMx =
                                    (1) 

We choose the complex Morlet wavelet as mother 

wavelet function (2) because it has been 

successfully used in the analysis of the temporal-

frequency of EEG signals [24]. 

)exp()2exp(
1

)(
2

σ
π

πσ
ψ

t
tit −Ω=

                        (2) 

In this paper, we use the both DWT and DFT to 

extract the features from the emotion-related EEG 

signals. In this strategy, L-second epochs are 

decomposed into five sub-bands by DWT and 

Morlet mother wavelet. Then spectrum energy of 

five frequency bands (∆, α, β, θ, γ) is respectively 

calculated for five sub-bands (d5, d4, d3, d2, d1). 

This process is repeated for all of channels (N) and 

frames which is shown in Fig.4.  

 

2.2 Gabor-based features  
Gabor’s theory describes the signal as function of 

time and frequency content [25]. Gabor functions 

can be employed as a new representation for the 

processing information in the time and frequency 

domains [26]. The time-domain representation 

details the signal amplitude at each instant in time. 

While the frequency-domain representation uses 

infinitely-long pure sinusoids, described only by 

their frequency, amplitude and phase. A Gabor 

function is defined by: 
 

])(2.(cos[)(
22 )( φπα +−= −−

o

tt
ttfetg o   

                             ]))(2sin[ φπ +−+ ottfi         (3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: The process of feature extraction based on DWT 

and DFT 

 

whereα is the constant of the Gaussian modulating 

probability function and is inversely proportional to 

the width of the function, ot  defines the centre of 

the Gaussian function. f  is the frequency of the 

oscillation, φ is the phase of the harmonic 

oscillation (relative to the center of the Gussian 

modulating function). In our application, we use 

Gabor functions with five different scales ( ot = 

0,1,2,3,4) and eight different orientations ( 8/dπφ =  

for d = 0,1,2,3,4,5,6,7) and  f = 2. 

Decompose into five sub-bands by DWT and 

Morlet mother wavelet 

dxkx
jj

xfk
j

d )2(
2/

2)()( −= ∫ ψ  

Get the M epochs from one channel 

Get the five-second frames from emotion-

related EEG signals including N channels 

Get the L-second epochs from emotion-related 

EEG signals including N channels (L<5) 

Band 

d5 

Band 

d4 

Band 

d3 
Band 

d2 

Band 

d1 

Apply the DFT on each sub-band, separately 
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−

=

−=
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of band 
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Energy 

of band 
α 
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of band 

β 
 

Energy 
of band 

γ 
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of band 

θ 
 

Store the features into initial vector  

(Feature vector dimensions = M×5) 

Form the final feature vector 

with dimensions R = N×M×5 

if channel = N 
if channel ≠ N 
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If 
wcX ,

be the L-second epoch at channel c and time 

w, the Gabor function representation is obtained by 

convolving the Gabor function with 
wcX ,

. The 

result is a 3th order tensor in 321 ,, NNN
R which give 

the spatial, spectral and temporal domain. We use 

GaborSD for representations of 
wcX ,

. It is the sum 

over scales and directions of Gabor function-based 

representation. The most important benefit of this 

new representation is low cost of computing. 

GaborSD is the magnitude part of the output 

generated by convolving an 
wcX ,

with the sum of all 

forty Gabor functions by: 

∑∑∑∑ ==
oo t d

wc

t d

wc tgXtgXtfcGaborSD )(*)(*),,( ,,

   (4) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The process of feature extraction based on 

GaborSD and PCA 

 

GaborSD(c, f, t) is the output of the GaborSD 

method for representation. Therefor, forty sub-

representation (sub-band) are calculated by 

GaborSD for each EEG epoch channel that are 

specified with its coefficients. In order to extract the 

features from the sub-representation of L-second 

EEG epochs, the spectrum energy of each sub-

representation is calculated by applying Discrete 

Fourier Transform (DFT). The magnitude part of the 

generated outputs of DFT is identified as extracted 

features from EEG signals. Many of this features are 

non-effective and increase computational cost and 

decrease the performance of classification. On the 

other hand, when the number of features is too 

much, the effective feature selection is difficult, 

supervisory. Therefore, we employ PCA [27] to 

select six effective features. The selected features 

have two properties:  

• dispersion of feature is small for training samples 

of within classes.  

• dispersion of feature is large for training samples 

of between classes. 

Fig. 5 shows the process of feature extraction and 

formation the feature vector. In this algorithm, PCA 

is transformed a feature vector with large dimension 

to a feature vector with lower dimension [28]. 

 

 

2.3 IPSONN Classifier 
The nonlinear decision boundary (NDB) is best 

chose to classify the feature vectors as 

representative of emotion-related EEG signals. 

Thus, a nonlinear classifier can be employed to 

determine a NDB for each patient in order to 

improve the sensitivity of detector. Furthermore, a 

multilayer Perceptron (MLP) neural network can 

help to decrease the latency of detector. In this 

paper, we use a MLP classifier based on the 

improved particle swarm optimization (IPSO) [29] 

learning algorithm in order to adjust the parameter 

of the neural network (NN), efficiently. The IPSO 

method can search a better solution of the weights in 

a NN instead of other methods such as back 

propagation. It is including of the traditional particle 

swarm optimization (PSO) [30] algorithm and the 

modified evolutionary direction operator (MEDO). 

The PSO algorithm is based on the schooling of fish 

or flocking of birds and can quickly obtain the 

global solution. The MEDO [31] increases the 

capability of the PSO to find the optimal solution. 

The procedure of IPSO is shown in Fig. 6. The 

MEDO is used to prevent the premature 

convergence and accelerate the global search 

capacity. These can be useful for determine the 

Form the final feature vector 

with dimensions Z = N × M × 40 

Get the five-second frames from emotion-related 

EEG signals including N channels 

if channel = N 
if channel = N 

Apply PCA 

Final feature vector dimensions = R < Z 

M × 40 representations 

M × 40 features 

Get the L-second epochs from emotion-related 

EEG signals including N channels (L<5) 

Get the M epochs from one channel 

Decompose into forty sub-representation by 

GaborSD for each EEG epoch 

 

Apply the DFT on each sub-representation, 

separately 

∑
−

=

−=
1

0

/2
k

n

knj

nk efF π
 

Store the features into initial vector  

(Feature vector dimensions = M × 40) 
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optimal NDB between the extracted features of six 

classes. 

The used MLP consisted of one input layer, one 

hidden layer and one output layer as shown in Fig.7. 

The normalized (between 0 and 1) feature vectors 

(with ten dimensions) are fed to the input layer and 

which distributed to each unit of the hidden layer. 

The first layer receives weights from the input. Each 

subsequent layer receives weights from the input 

and all previous layers. All layers have biases. The 

last layer is the network output. A logarithmic 

sigmoid function is used as the activation function 

in hidden layers while a linear function is used in 

the output layer. Additional connections improve 

the speed at which the network learns the desired 

relationship. The classifier is consisted of R = 

5×N×M input neurons, R hidden neurons and six 

output neurons to indicate the emotions. The 

training and testing samples is normalized by 

adopting a binary normalization algorithm. 

Selection of the training and test data is performed 

randomly. The classifier is trained with 80% data 

samples and tested with 20% data samples for a test 

error tolerance of 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6: The process of IPSO 

 
Fig. 7:  The used IPSONN classifier. R=5×N×M (number 

of features) 

2.3 PNN classifier 
The probabilistic neural network (PNN) is 

introduced by Specht [32] and is characterized by 

fast training and convergence to Bayes-optimal 

decision surface. It estimates the Parzen [33] or a 

similar probability density function for each class 

based on the training samples and is capable of 

realizing or approximating the Bayes classifier:  

)})({ xfpmaxarg(=c(x) jj
Mj1 ≤≤

                            (5) 

where 
dRx∈  is a d-dimensional feature vector, 

c(x) denotes the estimated class of pattern x. pj is the 

prior probability of class j, and the conditional 

probability density function of class j is fj. The goal 

of the PNN is to estimate the values of fj by: 

∑
=

=
j

jj

n

i

i

in

j

n XxK
n

xf
1

)( ),(
1

)(
⌢

                             (6) 

where }, ii Y{XX = is the set of n observations, 

each 
d

ii xX ∈  is a feature vector, and iY  is a label 

indicating the class of pattern iX . The sequence nK  

is the Parzen kernel which is defined by: 

)(),(
n

d

nn
h

ux
KhuxK

−
= −

                                  (7) 

where K is an appropriately selected function and 

nh  is a certain sequence of numbers. The function K 

can be presented by:  

 ∏
=

=
d

i

ixHxK
1

)( )()(                                           (8) 

Then, sequence is expressed by means:  

∏
=

−− −
=

d

i n

ii
d
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h
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ehuxK

1

2
)()(

2/1 )()2(),( π           (9) 

The prior probabilities pj are estimated by: 

 
n

n
xp

j

j =)(ˆ                                                   (10) 

where jn is the number of observations from class j. 

We get the following discriminant function 

estimation by combining (5), (6) and (10). 

∑
=

=
j

j

n

i

j

in

j

nj Xxk
n

xd
1

)(

, ),(
1

)(ˆ                           (11) 

Assign input pattern x to class m in moment n if 

)(ˆ)(ˆ
,, xdxd ninm  > 0                                              (12) 

In this paper, we use a feed forward networks built 

with three layers. This network structure is shown in 

Fig.8. The input layer is fully connected to the 

hidden layer. Feature vectors are normalized and 

used as inputs of this network. The hidden layer has 

a node for each classification. Each hidden node 

Measure the performance of NN 
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fitness

+
=
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1  

Update local best and global best MEDO 
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Update velocity 
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best 

NO 
Yes 

Primary swarm 

Calculate the RMSE 

 

∑∑
= =

−=
nTr

i

nout

j

jiji yt
nTr

RMSE
1 1

2

,, )(
1  

WSEAS TRANSACTIONS on SIGNAL PROCESSING Saadat Nasehi, Hossein Pourghassem

E-ISSN: 2224-3488 92 Issue 3, Volume 8, July 2012



calculates the dot product of the input vector with a 

test vector subtracts 1 from it and divides the result 

by the standard deviation squared. Three nodes in 

output are represented by unit vector happiness = [1 

0 0 0 0 0], surprise = [0 1 0 0 0 0],..., sadness = [0 0 

0 0 0 1]. 

  

 
Fig. 8:  PNN structure. R: number of features. Q: number 

of training samples, K: number of classes (K = 6). The 

three layers are input layer, radial basis layer and 

competitive layer. 

 

Table 2. Effective parameters of the proposed algorithms 

and their values 

Parameters Name values 

L Length of EEG epoch for feature 

extraction 

1, 2.5, 5 

R Number of features is selected by 

using Gabor functions or wavelet 

transform approaches 

15, 20, 25, 

30 

 

 

4 Experimental results 
In this section, we evaluate the performance of four 

EEG-based emotion recognition algorithms. First, 

the performance measures and influence parameters 

are introduced. Finally, the results of algorithm with 

different values of the parameters are evaluated and 

compared with other algorithms. 

 

4.1 Evaluation Measures 
The performance of an EEG-based emotion 

recognition algorithm is frequently evaluated by 

means of classification accuracy as following: the 

percentage of emotions correctly identified which is 

calculated by: 

 

emotions  totalofNumber 

emotions classifiedcorrect  ofNumber 
accuracytion classifica =  

                                                                 (13) 

We use the MATLAB to implement algorithms. To 

estimate the performance of systems and calculate 

the classification accuracy, the systems is trained 

with 80% of dataset. Table 2 shows the values of 

influence parameters at the performance, which is 

used to simulate the proposed algorithm. In each 

algorithm, we try to find the best values for EEG 

epoch length and number of selected features. 

 

4.2 Performance of G-IPSONN algorithm 
G-IPSONN algorithm uses the Gabor-based features 

and IPSONN classifier to recognition of emotions. 

To investigate the effect of parameter L, the 

parameter R = 25 is fixed and length of epochs has 

been changed for L = 1, 2.5 and 5. In this test, the 

classification accuracy has better results, when 

length of epochs has been decreased. The best 

results obtained for L = 2.5 seconds. In this 

condition, the average classification accuracy 

reached 57.20%. The results show that more details 

from features values has been shared to create the 

distinction between classes with decreasing the 

length of epochs. The result of this experiment is 

shown in Table 3.   

To investigate the effect of R, the parameter L = 2.5 

seconds is fixed and number of extracted features 

has been changed for R = 15, 20, 25 and 30. In this 

test, best result is obtained for R = 25. Thus, 

growing the number of features can increase the 

performance of G-IPSONN algorithm. The result of 

this test is shown in Table 4. 

Table 3. Effect of change in length of epoch on 

performance of G-IPSONN algorithm (R=25) 
 

Classification accuracy 

(%) 
Length of epoch 

L = 1 L = 2.5 L = 5 

happiness 46.42 53.57 42.85 

surprise 59.37 62.50 53.12 

anger 65.51 68.36 58.62 

fear 37.50 46.66 33.33 

disgust 50.00 53.84 42.30 

sadness 42.30 57.69 51.42 

Average accuracy (%) 50.18 57.20 46.94 

 

Table 4. Effect of change in number of selected features 

by GaborSD and PCA on performance of G-IPSONN 

algorithm (L = 2.5 second) 
 

Classification 

accuracy (%) 
Number of features 

R = 15 R = 20 R = 25 R = 30 

happiness 20.49 42.46 53.57 43.96 

surprise 31.75 51.27 62.50 60.44 

anger 45.27 54.36 68.96 58.07 

fear 25.98 33.33 46.66 39.56 

disgust 31.44 40.92 53.84 53.84 

sadness 37.41 47.18 57.69 51.93 

Average accuracy  32.05 38.25 57.20 51.30 
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4.3 Performance of W-IPSONN algorithm 
Wavelet-based features and IPSONN classifier are 

used in W-IPSONN algorithm. To evaluate the 

effect of parameter L, the parameter R = 25 is fixed 

and length of epochs has been changed for L = 1, 

2.5 and 5. In this test, the classification accuracy has 

better results, when length of epochs has been 

decreased. The best results are obtained for L = 1 

second. In this condition, the average classification 

accuracy of 54.77% is reached. The results illustrate 

that more details from wavelet-based features values 

has been shared to create the distinction between 

classes with decreasing the length of epochs. The 

result of this experiment is shown in Table 5.   

To evaluate the effect of R, the parameter L = 1 

second is fixed and number of extracted features has 

been changed for R = 15, 20, 25 and 30. In this test, 

best result is obtained for R = 20. Thus, growing the 

number of features can increase the performance of 

W-IPSONN algorithm. The result of this test is 

shown in Table 6. 
 

Table 5. Effect of different lengths of epoch on 

performance of W-IPSONN algorithm (R=25) 
 

Classification accuracy 

(%) 
Length of epoch 

L = 1 L = 2.5 L = 5 

happiness 51.93 45.41 40.75 

surprise 60.75 58.96 51.97 

anger 66.54 63.28 56.28 

fear 43.12 39.14 34.37 

disgust 51.47 49.70 41.56 

sadness 54.86 40.66 50.31 

Average accuracy (%) 54.77 49.35 45.87 

 

Table 6. Effect of different numbers of selected features 

by DWT and DFT on performance of W-IPSONN 

algorithm (L = 2.5 second) 
 

Classification 

accuracy (%) 
Number of features 

R = 15 R = 20 R = 25 R = 30 

happiness 19.85 51.93 52.72 41.82 

surprise 30.49 60.75 63.14 53.33 

anger 41.58 66.54 65.66 56.91 

fear 27.82 43.12 43.12 37.65 

disgust 30.56 51.47 50.63 51.46 

sadness 35.63 54.86 55.79 49.38 

Average accuracy  30.98 54.77 46.73 48.42 

 

 

 

4.4 Performance of G-PNN Algorithm 
G-PNN algorithm uses the Gabor-based features and 

PNN classifier to recognition of emotions. To 

investigate, the effect of parameter L, the parameter 

R = 25 is fixed and length of epochs has been 

changed for L = 1, 2.5 and 5. In this test, the 

classification accuracy has better results, when 

length of epochs has been decreased. The best 

results are obtained for L = 2.5 seconds. In this 

condition, the average classification accuracy of 

64.78% is reached. The results show that more 

details from features values has been shared to 

create the distinction between classes with L = 2.5 

seconds. The result of this experiment is shown in 

Table 7.   

To investigate the effect of R, the parameter L = 2.5 

seconds is fixed and number of extracted features 

has been changed for R = 15, 20, 25 and 30. In this 

test, the best result is obtained for R = 25. Thus, 

growing the number of features can increase the 

performance of G-PNN algorithm. The result of this 

test is shown in Table 8. 
 

Table 7. Effect of different lengths of epoch on 

performance of G-PNN algorithm (R=25) 
 

Classification accuracy 

(%) 
Length of epoch 

L = 1 L = 2.5 L = 5 

happiness 49.24 58.76 43.59 

surprise 61.74 67.05 55.24 

anger 67.16 73.64 62.85 

fear 39.07 56.79 38.14 

disgust 51.04 69.47 46.07 

sadness 44.37 62.97 53.26 

Average accuracy (%) 52.25 64.78 49.85 

 

Table 8. Effect of different numbers of selected features 

by DWT and DFT on performance of G-PNN algorithm 

(L = 2.5 second) 
 

Classification 

accuracy (%) 
Number of features 

R = 15 R = 20 R = 25 R = 30 

happiness 21.93 45.67 58.76 45.61 

surprise 30.58 52.73 67.05 63.72 

anger 47.73 56.62 73.64 60.18 

fear 29.38 37.14 56.79 44.63 

disgust 32.71 45.28 69.42 58.49 

sadness 45.11 56.82 62.97 56.38 

Average accuracy  34.57 49.04 64.78 54.83 
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4.5 Performance of W-PNN algorithm 
W-PNN algorithm uses the wavelet-based features 

and PNN classifier to recognition emotions. To 

evaluate the effect of parameter L, the parameter R 

= 25 is fixed and length of epochs has been changed 

for L = 1, 2.5 and 5. In this test, the classification 

accuracy has better results, when length of epochs 

has been decreased. The best results are obtained for 

L = 2.5 seconds. In this condition, the average 

classification accuracy of 59.99% is reached. The 

results show that more details from features values 

has been shared to create the distinction between 

classes with L = 1. The result of this experiment is 

shown in Table 9.   

To evaluate the effect of R, the parameter L = 2.5 

seconds is fixed and number of extracted features 

has been changed for R = 15, 20, 25 and 30. In this 

test, best result is obtained for R = 25. Thus, 

growing the number of features can increase the 

performance of W-PNN algorithm. The result of this 

test is shown in Table 10. 
 

Table 9. Effect of different lengths of epoch on 

performance of W-PNN algorithm (R=25) 
 

Classification accuracy 

(%) 
Length of epoch 

L = 1 L = 2.5 L = 5 

happiness 54.74 48.15 43.59 

surprise 61.20 60.72 54.27 

anger 66.39 64.16 60.23 

fear 45.76 38.07 34.76 

disgust 54.17 51.63 43.05 

sadness 59.73 43.91 54.63 

Average accuracy (%) 59.99 51.10 48.42 

 

Table 10. Effect of different numbers of selected features 

by DWT and DFT on performance of W-PNN algorithm 

(L = 2.5 second) 
 

Classification 

accuracy (%) 
Number of features 

R = 15 R = 20 R = 25 R = 30 

happiness 29.48 48.58 54.74 41.95 

surprise 31.76 53.26 61.20 60.43 

anger 45.28 56.37 66.39 58.87 

fear 26.88 38.83 45.76 39.50 

disgust 32.44 40.72 54.17 53.04 

sadness 38.41 47.25 59.73 51.73 

Average accuracy  34.20 47.50 59.99 50.92 

 

 

5 Discussion and comparison with 

other algorithms 
In this section, we obtain a perfect comparison 

between our proposed algorithm and other presented 

algorithms in the literature. For example, 

Pertrantonakis et al. [19] presented a method for the 

evaluation of emotion states that are elicited within 

EEG-based emotion recognition (EEG-ER) scenario 

and localized emotion-related activity. 

Petrantonakis’s approach was based on the 

information shared between specific EEG locations 

in the brain, using multidimensional directed 

information (MDI) [34] analysis. The asymmetry 

concept that rules the experience of negative or 

positive emotions was both verified and exploited to 

evaluate the degree of a subject experiences or a 

certain affective state. Furthermore, the 

development of the windowed MDI on IMFs 

provided a promising technique for the time-

frequency segmentation of EEG signals in regard 

with the subjective brain emotional activity, 

contributing towards both more reliable emotion 

elicitation techniques and robust feature extraction 

methods. Petrantonakis reported an average 

accuracy of 61% from 16 subjects visually 

stimulated with pictures. It was not successful in 

recognition of emotions with EEG containing a 

mixture of frequencies or those with low-amplitude 

high-frequency activity. Khosrowabadi et al. [35] 

presented an EEG-based emotion recognition 

system. Multi-information and magnitude squared 

coherence was applied to investigate the 

interconnectivity between 8 scalp regions. A study 

was performed to collect 8 channels of EEG data 

from 26 healthy right-handed subjects in 

experiencing 4 emotional states while exposed to 

audio-visual emotional stimuli. After feature 

extraction, 5-fold cross-validation was then 

performed using the KNN and SVM classifiers. The 

frequency band of 2-30 HZ of EEG signal was 

evaluated for valence and arousal discrimination. 

Investigation of emotions using 2-second EEG 

signal with sampling rate of 250 HZ has been shown 

as a meaningful window length. Khosrowabadi 

reported an average accuracy of 58.2%. Schaaff et 

al. [36] investigated a method to facilitate emotion 

recognition from EEG signals. Schaaff developed a 

headband to measure EEG signals on the forehead 

and collected data from five subjects. To induce 

emotions, 90 pictures from the International 

Affective Picture System (IAPS) belonging to the 

three categories pleasant, neutral and unpleasant 

were used. A system based on SVM classifiers was 

developed for emotion recognition. With this system 
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an average accuracy rate of 47.11% was be achieved 

on subject dependent recognition.  

Ishino et al. [37] proposed a system for estimating 

the feelings of joy, anger, sorrow and relaxation by 

using neural network, which was obtained accuracy 

rate of 54.5% for joy, 67.7% for anger, 59% for 

sorrow and 62.9% for relaxation. Berkman et al. 

[38] used a single-layer neural network to predict 

three categories of emotions including positive, 

negative and neutral with accuracy rate of 43%. 

Chanel et al. [39] showed that arousal assessment of 

emotion can be obtained with a maximum accuracy 

rate of 58% for three emotion classes estimated by 

the naive Bayes classifier. Also, previous work 

involved MLP and SVM to recognize music-

induced emotion response with accuracy rate of 

69.69% and 92.73%, respectively. Murugappan et 

al. [40] proposed an emotion recognition system 

from EEG signals. The audio-visual induction-based 

acquisition protocol had been designed for acquiring 

the EEG signals under four emotions (disgust, 

happy, surprise and fear) for participants. Totally, 6 

healthy subjects with an age group of 21-27 using 

63 biosensors were used for registering the EEG 

signal for various emotions. After preprocessing, the 

signals, two different lifting-based wavelet 

transforms (LBWT) were employed to extract the 

three statistical features for classifying human 

emotions. In this algorithm, Fuzzy C-Means (FCM) 

clustering was used to classify the emotions. 

Murugappan reported an average accuracy rate of 

57% from six subjects and four emotions. 

Considering the above research works, all of them 

targeted on emotional categorization of two or four 

classes. Unlike, the felt-emotion categories, the 

expressed-emotion can be described in a total of 67 

adjectives. However, when the number of the 

categories of predicted felt-emotion increases, it 

would be an inevitable issue as how to maintain or 

even improve the performance. Accordingly, we 

suggest an optimal EEG-based emotion recognition 

algorithm to handle the multi-class classification 

problem. In our algorithms, the growing the number 

of features increases the classification accuracy. 

Furthermore, when PNN classifier is used to classify 

the Gabor-based features, the algorithm has 

maximum accuracy rate. Because, it has several 

advantages relative to the IPSONN classifier: 

• Training samples can be added or removed 

without extensive retraining. 

• This algorithm guarantees to converge to an 

optimal classifier as the size of the representative 

training set increases (Bayes’ optimal decision 

surface) 

• An inherently parallel structure (making parallel 

implementation a natural progression) is 

constructed. 

• The probability density function for each class is 

estimated based on the training samples. 

• The implementation of our algorithm is relatively 

simple. 

• This algorithm is robustness to noise and has 

self-learning ability. 

The selected features by Gabor functions and PCA 

also have two properties: dispersion of features is 

small for training samples of within classes and 

dispersion of features is large for training samples of 

two classes. Therefore, the G-PNN algorithm can 

used as a optimal EEG-based emotion recognition 

algorithm with average accuracy rate of 64.78%. 

Table 11 shows a comparison between our 

algorithm and other presented algorithms in the 

literature. 

Table 11. The comparison between our algorithm and 

other algorithms in the literature 

 

Algorithms 

 

 

No. 

subject 

 

No. 

emotions 

Accuracy 

rate 

(%) 

The used 

features and 

classifier 

Petrantonakis 

[19] 
16 Six 61.45 

MDI-IMF based 

features and 

KNN classifier 

Khosrowaba

di [35] 
26 Four 58.26 

5-fold cross-

validation 

And KNN-SVM 

Schaaff [36] 5 Three 47.31 SVM 

Murugappan 

[40] 
6 Four 57.63 

Statical features 
and FCM 

clustering 

Our 

algorithm 
10 Six 64.78 

Gabor-PCA 
based features 

and PNN 
classifier 

 

6 Conclusion 
We presented an EEG-based emotion recognition 

algorithm. In this algorithm, the emotion-related 

EEG signals were decomposed by Gabor functions 

(GaborSD) and were represented in spectral, spatial 

and temporal domains. Then R effective features 

were obtained from each representation by applying 

DFT and PCA. Finally a PNN classifier was used to 

determine an optimal nonlinear decision boundary. 

The used PNN classifier had an inherently parallel 

structure and prevented the premature convergence 

which can increase the sensitivity of algorithm. The 

proposed algorithm was implemented to classify six 

basic emotions. In order to obtain the best results, 

we changed some effective parameters such as 

length of epochs (L) and number of features (R). In 

the experimental result, the average classification 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Saadat Nasehi, Hossein Pourghassem

E-ISSN: 2224-3488 96 Issue 3, Volume 8, July 2012



accuracy of 64.78% is reached for L = 2.5 seconds 

and R = 25 features.  
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